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AN ACCURATE CURVED BOUNDARY TREATMENT IN THE LATTICE BOLTZMANN 
METHOD 

RENWEI MEI*, LI-SHI LUO+, AND WEI SHYY* 

Abstract. The lattice Boltzmann equation (LBE) is an alternative kinetic method capable of solving 

hydrodynamics for various systems. Major advantages of the method are owing to the fact that the solution 

for the particle distribution functions is explicit, easy to implement, and natural to parallelize. Because the 

method often uses uniform regular Cartesian lattices in space, curved boundaries are often approximated by 

a series of stairs that leads to reduction in computational accuracy. In this work, a second-order accurate 
treatment of boundary condition in the LBE method is developed for a curved boundary. The proposed 

treatment of the curved boundaries is an improvement of a scheme due to Filippova and Hänel. The proposed 
treatment for curved boundaries is tested against several flow problems: 2-D channel flows with constant 

and oscillating pressure gradients for which analytic solutions are known, flow due to an impulsively started 

wall, lid-driven square cavity flow, and uniform flow over a column of circular cylinders. The second-order 

accuracy is observed with solid boundary arbitrarily placed between lattice nodes. The proposed boundary 
condition has well behaved stability characteristics when the relaxation time is close to 1/2, the zero limit 
of viscosity. The improvement can make a substantial contribution toward simulating practical fluid flow 

problems using the lattice Boltzmann method. 

Key words, kinetic method, lattice Boltzmann equation, Navier-Stokes equation, second order boundary 

conditions 

Subject classification. Fluid Mechanics 

1. Introduction. There has been a rapid progress in developing and employing the method of the 

lattice Boltzmann equation (LBE) [24, 20, 5] as an alternative computational technique for solving complex 

fluid dynamic problems (see the comprehensive reviews in [3, 6]). In a traditional method for computational 
fluid dynamics (CFD), the macroscopic variables, such as velocity u and pressure p, are obtained by solving 
the Navier-Stokes (NS) equations [28, 9, 31]. The lattice Boltzmann equation approximates the kinetic 
equation for the single particle (mass) distribution function f(x, £, t) on the mesoscopic level, such as the 

Boltzmann equation with the single relaxation time approximation [4]: 

(1.1) ft/ + «-V/ = ~[/-/<°>], 

where £ is the particle velocity, /^ is the equilibrium distribution function (the Maxwell-Boltzmann distri- 
bution function), and A is the relaxation time. The right hand side (RHS) of Eq. (1.1) models the effect of 
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FIG. 1. Two-dimensional 9-velocity (or 9-bit) lattice. 

the fluid viscosity on the molecular level through the collision (relaxation) process. The macroscopic quanti- 

ties (such as mass density p and momentum density pu) are the hydrodynamic moments of the distribution 

function /: 

(1.2a) 

(1.2b) 

P = Jf(x,t,t)d£, 

It has been shown that the velocity space £ can be discretized into a finite set of points {£„} without affecting 

the conservation laws [14, 15, 1]. In the discretized velocity space the Boltzmann equation (1.1) becomes 

1, 
(1.3) Ä/a+€„-V/ = -T[/a-/Jrq)] AL (a = 0, 1, 2, .... 8 for 2-D), 

for the distribution function of discrete velocities fa{x, t) = f(x, £a, t).   The equilibrium distribution 

function, /ieq), and the discrete velocity set {£Q} can be derived explicitly [14, 15, 1]. 
For 2-D square lattice shown in Fig. 1, we use {ea} to denote the discrete velocity set, and we have [29]: 

'  (0,0), a = 0, 
(1.4) ea = <   (cos[(a - 1)TT/4], sin[(a - 1)TT/4]) c, a = 1, 3, 5, 7, 

(cos[(a - 1)TT/4], sin[(a - 1)TT/4]) y/2c,    a = 2, 4, 6, 8, 

where c = Sx/5t, Sx and St are the lattice constant and the time step size, respectively, and 

(1.5) 

where 

(1.6) 

/ieq)=«W 1 + —ea ■ u + —j(ea ■ uf - -ju • u 

wa = < 

2c4 

a = 0, 

a = 1, 3, 5, 7, 

k  i     a = 2, 4, 6, 8. 

2c2 

9' 
1 
9' 

With the discretized velocity space, the hydrodynamic moments are given by: 

(1.7a) P = E/« = E/«eQ)' 
a a 

(1.7b) pu = E eafa = E e"/£eq) • 
a a 

The speed of sound of this model is c8 = C/A/3, and the equation of state is that of an ideal gas, 

(1.8) csp. 



Equation (1.3) is one of numerous ways to model the transport equation of /, Eq. (1.1). 
Based on the Chapman-Enskog analysis, the solution for fa(x, t) may be expanded in the form of 

(1.9) fa(x, t) = f^(x, t) + efa
l\x, *) + ■•-, 

where e = Kn is the formal expansion parameter and Kn is the Knudsen number, which is the ratio between 

the mean free path and macroscopic flow characteristic length. Substitution of Eq. (1.9) into Eq. (1.3) with 

a factor 1/e in the collision term leads to 

(1.10) /W(x, t) = -A [dtfa^(x, t) + ea- Vf^(x, t)] • 

Proceeding with the Chapman-Enskog analysis, it can be shown that the Euler equations can be recovered 

from the solution for fa, and the NS equations are recovered in the near incompressible limit (i.e., the 

Mach number M = \u\/cs < 1) by the first two terms in Eq. (1.9). The viscosity of the fluid is 

(1.11) v = t?,\. 

Equation (1.3) can be further discretized in space and time. The completely discretized form of Eq. (1.3), 

with the time step St and space step eadt, is: 

(1.12) fa(xi + ea&u t + St)- fa(xi, t) = --[fa(xit t) - fa
eq)(xi, t)], 

where r = X/St, and Xi is a point in the discretized physical space. The above equation is the lattice 

Boltzmann equation [24, 20, 5] with Bhatnagar-Gross-Krook (BGK) approximation [4]. The left-hand side 

(LHS) of Eq. (1.12) is physically a streaming process for particles while the RHS models the collisions through 

relaxation. 
Although the lattice Boltzmann equation historically originates from the lattice gas cellular automata 

[10, 30], it is indeed a special finite difference form of the continuous Boltzmann kinetic equation, i.e., the 
LHS of Eq. (1.1) is discretized along the direction of the characteristic line with discretization of phase space 

and time tied together [14, 15]. The leading order truncation error of such a discretization is then taken into 

account exactly by modifying the viscosity in the NS equation derived from Eq. (1.12) to 

(1.13) v = c% \T - i 

The positivity of the viscosity thus requires that T > 1/2. The lattice Boltzmann scheme consists of two 

computational steps: 

(1.14a) Collision: fa(xi,t)=fa(xi,t)--[fa(xi,t)-fa
e<l'>(xi,t)], 

(1.14b) Streaming: fa(xt + ea5t, t + St) = fa(xi, t), 

where fa and fa denote pre- and post-collision state of the distribution function, respectively. The advantages 
of solving the lattice Boltzmann equation over the NS equations can now be seen. In the kinetic equation 

for fa given by Eq. (1.3), the advection operator is linear in the phase space whereas the convection term is 
nonlinear in the NS equation. In traditional CFD methods, the pressure is typically obtained by solving the 

Poisson or Poisson-like equation derived from the incompressible NS equations that can be time consuming. 

In the LBE method, the pressure is obtained through an extremely simple equation of state p — <?sp. This 

is an appealing feature of the LBE method. The discretized Eq. (1.12) for fa is explicit in form, easy to 
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FIG. 2. Layout of the regularly spaced lattices and curved wall boundary. The thick curve marks the boundary location. 
The solid circles (•) mark the positions where particle-boundary collision occurs. The empty (o) and shaded (•) circles are 

fluid sites and solid sides, respectively. 

implement, and natural to parallelize. The collision step is completely local. The streaming step takes very 

little computational effort at every time step. 

However, unlike solving the NS equations for which the non-slip condition for u on a solid wall is satisfied 

at the macroscopic level, there is no corresponding, physically based boundary condition for /„ on a solid 
wall at the mesoscopic level. For a lattice node located on the fluid side at Xf, as illustrated in Fig. 2, 

Eq. (1.14b) clearly indicates a need for the information of at Xb on the solid side. Therefore all the effort in 
the previous treatment of the boundary conditions in the LBE models is much focused on the calculation of 
fa moving from the wall into the fluid region. In previous works of the LBE, the most often used boundary 

condition on the wall is the so-called bounce-back scheme [32, 11, 19]. In the bounce-back scheme, after a 
particle distribution fa streams from a fluid node at xj to a boundary node at Xb along the direction of ea, 

the particle distribution fa scatters back to the node Xf along the direction of ea (= — ea) as /a. Since the 
wall position xw was forced to be located at x&, this is referred to as bounce-back on the node (BBN) [2]. 

However, a finite slip velocity at the stationary wall exists [22, 19] and the accuracy for the flow field is thus 

degraded due to the inaccuracy of the boundary conditions [11]. In simulating suspension flows using the 

LBE method, Ladd placed the solid walls in the middle between the lattice nodes [21]. This is referred to as 
bounce-back on the link (BBL). It has been shown that the BBL scheme gives second-order accurate result 
for straight walls [33, 19]. Noble et al. developed a second-order accurate boundary condition to compute 

fs but it is only applicable to straight walls in triangular lattice space [27]. He et al. generalized the scheme 

of Noble et al. to arbitrary lattice [19]. Chen et al. placed the wall on the lattice node so that Xb is one 
lattice inside the wall [7]. They used an extrapolation of fa on the fluid side (including the wall node) to 

obtain fa at Xb- Zou and He proposed to apply the BBL scheme only for the non-equilibrium part of fa at 

the wall [33]. 

For a curved geometry, the use of BBL requires approximation of the curved solid boundary by a series 
of stair steps. The geometric integrity cannot be preserved by such an approximation. For high Reynolds 
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number flows, the integrity of geometry is important since the vorticity generation and stress distributions are 

sensitive to the geometrical resolution. To this end, He and Luo proposed to use the LBE with nonuniform 

grid with second order interpolations [14,17,18]. He and Doolen further applied the interpolation to the LBE 

with curvilinear coordinates or body-fitted coordinates [13]. Mei and Shyy solved Eq. (1.3) in curvilinear 

coordinates using finite difference method [25]. While the wall geometry is accurately preserved in body- 

fitted coordinates, the flexibility to handle complex geometries is maintained by using the numerical grid 
generation techniques common to the Navier-Stokes solvers. It should be noted that perhaps the most 

profound and rigorous theoretical treatment of the boundary condition along the wall is given by Ginzbourg 

and d'Humieres [12]. The scheme proposed by Ginzbourg and d'Humieres is local and accurate up to second 

order in Chapman-Enskog expansion. However this work has not attracted sufficient attention because its 

implementation is not as easy as the bounce-back scheme. 

In this work, a robust, second-order accurate treatment for the distribution function fa near a curved 

boundary is developed based on the method recently proposed by Filippova and Hänel (hereinafter referred 
as FH) [8]. In Ref. [8], the boundary condition for fa on the solid side is evaluated using Eq. (1.3) for fa, 

and the Taylor series expansion in both space and time for /„ near the wall. FH reported numerical results 

for a uniform flow over a cylinder [8]. However, it is found in this work that when tested in a pressure driven 
channel flow (see implementation and discussions in Section 2) there is a strong boundary condition induced 

instability when the distance from the wall to the first lattice on the fluid side is less than half of the lattice 

size. 
Using the Taylor series expansion for the velocity u near the wall, a new treatment for fa near a curved 

wall is proposed in this work. While maintaining a second-order accuracy of the solution in handling curved 

walls, the computational stability is improved so that lower viscosity, or higher Reynolds number, can be 
attained in the LBE simulations. The new boundary condition treatment is tested systematically to assess 
the temporal and spatial accuracy and robustness in 2-D channel flow with constant and oscillating pressure 

gradients, flow due to an impulsively started wall, lid-driven square cavity flow, and flow over a column of 
circular cylinders. Detailed comparisons for the flow field are made with either analytic solutions or well 

resolved numerical solutions of the Navier-Stokes equations by using finite difference method. The improved 
boundary treatment represents a significant step towards solving practically relevant flow problems using 

the LBE method. 

2. Formulation for the Improved Boundary Condition. Filippova and Hänel considered a curved 
boundary lying between the lattice nodes of spacing Sx, as illustrated in Fig. 2, and briefly presented the 

derivation of their scheme for the treatment of curved boundary in Ref. [8]. However, they did not offer a 

thorough explanation to justify the theoretical basis of their method. It is instructive to first re-examine 
their derivation thoroughly. Based on the insight gained, an improved boundary treatment is then proposed. 

2.1. Re-examination of and comments on Filippova-Hänel's treatment. The macroscopic flow 

has a characteristic length of L. The lattice nodes on the solid and fluid side are denoted as xt, and Xf, 

respectively, in Fig. 2. The filled small circles on the boundary, xw, denote the intersections of the wall with 

various lattice links. The boundary velocity at xw, the intersection with the wall on the link between Xb 

and Xf, is uw. The fraction of the intersected link in the fluid region is A, as illustrated in Fig. 2, that is: 

(2.1) . A = I3*-35») . 

Obviously, 0 < A < 1 and the horizontal or vertical distance between Xf and xw is A • Sx on the square 

lattice. Suppose the particle momentum moving from xj to x\, is ea and the reversed one from Xb to x/ is 



ea = —ea. After the collision step, fa on the fluid side is known, but not on the solid side. (Hereafter we 
shall use ea and /a to denote the velocity and the distribution function coming from a solid node to a fluid 

node, and /a is the unknown to be computed.) To finish the streaming step, 

(2.2) f&ipf = Xb+ ea5<, t + 5t) = fs(xb, t), 

it is clear that /a(a:&, t) is needed.   To construct fa(xt, t) based upon some known information in the 
surrounding, Filippova and Hänel essentially proposed to use the following linear interpolation [8]: 

(2.3) fs{xb, t) = (l-x)fa(xf, t)+xfi*'(xb, t) - 2wa p-^(e&-uw), 

where uw = u(xw, t) is the velocity at wall, x 1S the weighting factor (to be determined) that controls the 

linear interpolation (or extrapolation) between fa(xf, t) and /i, (x&, t), a fictitious equilibrium distribution 

function given by 

(2.4) f^'Hx^t) =wap(xf,t) 3 9 3 
UfUf 

In the above equation, Uf = u(x/, t) is the fluid velocity near the wall and Ubf is to be determined later. It 
should be emphasized here that the weighting factor x depends on how «6/ is chosen. However, the choice 

of Ubf is not unique. For example, either Ubf — Uf or a linear extrapolation using «&/ = [(A — l)u/ + uw]/A 

appears reasonable at this stage. 
To determine x in EQ- (2-3), FH considered flows under the condition 

L 
(2.5) cT «1, 

i.e., the flow has an intrinsic characteristic time scale T that is much larger than the advection time on 

the lattice scale, L/c. This "slow-flow" condition enabled FH to approximate fä(xf, t + 6t) in Eq. (2.2) by 

/a (xf, t), 

(2.6) fa{xf =xb + e&6u t + St)= f&(xf, t) + Stdtfä + ■■■ . 

For the purpose of the order-of-magnitude estimate, it is seen that 0(dtfa) — 0(fs/T) so that 

(2.7) fä(xf,t + 6t) = U(xf,t) 1 + 0 
(!) 

= fä(Xf, t) 1 + 0 
\LcT) 

« fs{xf, t). 

It is noted that under condition (2.5) the neglected terms are of 0{^jfc) which are much smaller than the 

0(^-) terms of the present interest [in deriving an accurate boundary condition for fä{xb, t)}. Applying 
the Chapman-Enskog expansion in the form given by Eqs. (1.9) and (1.10) and invoking the "slow flow" 

approximation defined by Eq. (2.5), one obtains 

U(xf, t) = f^Hxf, t) - A [dt/a
eq) + ea • V/a

eq)] + • • • 

(2.8) «/a^(a;/)t)-Aeä-V/a
eq) + ---. 

For /a
et^ given by Eq. (1.5), the leading order term in V/a ' is given by ZwapV{u-e&)/c2 since the rest are 

higher order terms in the near incompressible flow limit. Noticing that A = rSt, Eq. (2.8) becomes 

f(eq) 

(2.9) 

fs(xf, t) « fs    (xf, t) - 3waprSt—eä-V{ufe&) 

= fLeq)(xf> *) ~ Qwap-^Uf-ea - 3wQ/9T<5(-^ea-V(u/-ea). 



which approximates the LHS of Eq. (2.2). To expand the RHS of Eq. (2.2) in terms of the small computational 

parameter 

(2.io) i = -t«l> 
it is first noted that fa(xb, t) in Eq. (2.4) can be expressed as 

(2.11) fL*\xb, t) = fieti)(xb, t) + wap^ea ■ (ubf - uj), 

so that the RHS of Eq. (2.2), or Eq. (2.3), can be rewritten as 

f«(xf, t) « f(eq)(xf, t) + (l- X)(l - lMfgHxf, t) + waP^ea ■ {Xub} - Xuf - 2uw) 

3 3 
(2.12) = fieq)(xf, t)-{l- X){T ~ l)6twap—ea   Vufea + wap—ea ■ (xubf - x"/ - 1uw). 

Based on linear interpolation, uy « [(A - l)u/ + uw]/A, expanding the velocity uw at Xf near the wall 

(xw) using Taylor series, i.e., uw = Uf + A5tea-Vuf, one obtains ubf - Uf « 6tea-Vu. Noticing that 

(xb-Xf) = esSt, and equating Eqs. (2.9) and (2.12) and matching terms linear in 5t results in x = (2A-1)/T. 

For ubf — Uf, we have ubf - Uf = 0 in Eq. (2.12). Matching to 0(6t) then requires x = (2A - 1)/(T - 1). 
FH found that ubf = [(A — l)uf + uw]/A gives computationally stable results only for A > 1/2. Hence, 

they proposed that 

I/*     ^ ! J (2A-1) . ^ 1 
(2.13) ubf = -(A - 1)«/ + —uw ,       and x = -—;—- >       for   A > - , 

and 

(2A-1) r       A      1 
(2.14) uv =uf,       and   x = \T_1)  >       for   A < -. 

To recapitulate, there are three independent assumptions that have been made in the foregoing deriva- 
tion. They are: (i) the Chapman-Enskog expansion in the form given by Eqs. (1.9) and (1.10) is valid; (ii) 

the intrinsic time scale of the unsteady flow must be much large compared to the advection time on the 

lattice scale given by Eq. (2.5); and (iii) the lattice spacing must be small compared to the characteristic 
length scale of the flow as given by Eq. (2.10) so that the Taylor series expansion for the velocity field near 

the wall is valid. There have been a large number of papers in the existing literature regarding the validity 

and usefulness of the Chapman-Enskog analysis for the solution of the Boltzmann equation. The "slow flow" 
condition is introduced to simplify the derivation of the boundary condition for fa; the implication of this 

assumption will be briefly addressed later in comparing the computational results with that based on the 

conventional bounce-back scheme. The last assumption is a typical computational resolution requirement. 
Equation (2.3) is essentially a linear interpolation (or extrapolation) and is used continuously in the 

computation. When the weighting factor x becomes too large, instability may develop. For 1 > A > 1/2, 

|x| = |2A — l|/r is always less than 2 because the positivity of the viscosity in the LBE scheme requires 

T > 1/2. For 0 < A < 1/2, |x| = |(2A - l)/(r - 1)|, and it may become too large when r is close to 1. To 

illustrate this point, a fully developed pressure driven 2-D channel flow is considered. The grid arrangement 
is shown in Fig. 3. For steady flow, a constant pressure gradient Vp along the x-direction is applied and can 

be treated as a body force. This is included [23] after the collision step by 

(2.15) fa(xi, t) = fa(xi, t) + wa5t — —e0 
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FIG. 3. Lattice configuration in channel flow simulations with an arbitrary A. 

where x is the unit vector along the x-axis. The boundary condition for fa{xi, t) on the wall follows those 

given by Eqs. (2.3), (2.4), (2.13), and (2.14). At the inlet (i = 1) and exit (i - Nx, in which JVX is the 

number of lattices in the rc-direction) the following is imposed, 

(2.16) 

(2.17) 

/«(i = 1, j) = /„(* = 2, j), 

/<,(* = Nx, j) = fa(i = NX-1, j). 

With Eq. (2.16), the velocity profile at the inlet, ux(i = 2, j), is not needed. Instead, the fully developed 

velocity profile is sought as part of the solutions. In this part of the investigation, Ny — 35 is used. The exact 

solution for the velocity profile [given by Eq. (3.1)] is used as the velocity initial condition which differs from 
the final steady state solution due to numerical errors. The equilibrium distribution function /4 based on 

the exact solution for the velocity profile is used as the initial condition for fa. The pressure gradient is set 

to ^ = —1.0 x 10~6. All computations are carried out in double precision. 
For A < 1/2, it is found that the computation is unstable for certain range of values of r. In Figure 4, 

solid curves are the stability-instability boundaries for the fully developed channel flow in the (A, r) space 

obtained from a large number of computations. For A < 0.2, the computation becomes unstable when r < 1. 
The large instability region is an apparent source of concern for FH's scheme when A < 1/2 since lower 

viscosity can only be achieved when r is close to 1/2. 
One may speculate that the instability in the above example results from the lack of specifying an inlet 

velocity profile, ux(y), or due to the extrapolation of fa at the inlet given by Eq. (2.16). To examine this pos- 

sibility, a channel flow entrance problem is considered. Uniform velocity profiles, ux(y) = —{H/12pv)(dp/dx) 

and uy(y) = 0 in which H is the channel height, are specified at i = 1.5 (half way between the first and 

second lattices) and the distribution functions fa{i = 1, j) for a = 1, 2, and 8 are obtained using Eq. (2.3) 

with x = 0 in accordance with A = 1/2 at i = 1.5. The boundary conditions on the wall are based on 
Eqs. (2.3), (2.4), (2.13), and (2.14). The exit boundary condition for /a's is given by Eq. (2.17). Hence the 
extrapolation for fa at the inlet is completely eliminated and the velocity profiles at the inlet are exactly 
given. Two types of initial conditions are used. Whenever possible, the equilibrium distribution functions 

corresponding to the uniform inlet velocity are specified at t = 0 throughout the flow field. This works for 
relatively larger values of r. However, instability can be encountered when r is considerably larger than the 
upper solid curve shown in Fig. 4 for the same value of A (< 1/2). A second type of initial condition is 
thus implemented. A converged solution at a relatively large value of r is used as the initial condition for a 



1.5 
Unstable region: fully developed channel flow with FH's BC. 

l©\iiV\2   Unstable region: channel flow entrance problem with FH's BC. 

0.5 

FIG. 4. Regions of instability in the LBE computation for channel flows using FH's boundary condition, Eqs. (2.3), (2.4), 
(2.13), and (2.14), with A < 1/2. The instability region for the fully developed 2-D channel flow (enclosed by solid curves) is 

slightly smaller than the instability region for the S-D channel flow entrance problem (enclosed by dashed curves). 

smaller value of T. The value of r is incrementally decreased to obtain the converged solutions for the new, 

smaller values of r. When the actual instability region is approached, the increment in T is maintained as 
small as 0.01 or 0.005. In the computation, & = _i.fj x 10-6, Ny = 35, and Nx = 65 are used. When 

the Reynolds number is low (due to the use of the small pressure gradient and larger r), the exit velocity 
profile is very close to the exact solution corresponding to the fully developed channel flow which validates 

the solution procedure. 
The stability-instability boundaries for the channel flow entrance problem obtained through a large 

number of computations (dashed curves) are also shown in Fig. 4. It is noted that the stability-instability 

boundaries for the channel flow entrance problem are very similar to, and slightly larger than, that for the 

fully developed channel flow despite the significant difference in the inlet boundary condition. Thus the 
source of the instability must be a result mainly due to the implementation of the solid wall condition. An 

alternative scheme must be developed to overcome this shortcoming. 

2.2. Improved treatment for curved boundary. We realize that the flexibility in the construction 

of is the key to achieve an improved computational stability as well as accuracy. Since x = (2A — 1)/(T — 1) 

given by Eq. (2.14) leads to a larger value of x when r is close to 1, it is desirable to reduce the magnitude of 
X by increasing the magnitude of the denominator in the expression for x- For A > 1/2, uy is the fictitious 

fluid velocity inside the solid and the denominator for x ls T- F°r A < 1/2, Ubf was chosen by FH to be Uf 
which is the fluid velocity at x/ and it leads to (T — 1) in the denominator for x- Thus, we propose to use 

Eq. (2.13) for A > 1/2 and use 

1 
(2.18) 

Thus 

(2.19) 

This requires 

(2.20) 

Ubf = Uff = u(xf + esSt, t),       for   A < 

Ubf -Uf = u(xf + ea<5t, t) - u(xf, t) = —5tVufea . 

-r(l-X)(l-l/r)-x = 2A-r 
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Unstable region with present BC. 
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FIG. 5. Regions of stability and instability in the LBE computation for channel flow using the present boundary condition, 

Eqs. (2.3), (2.4), (2.13), (2.18), and (2.21), with A < 1/2, similar to FIG. 4. The instability region for the fully developed 2-D 

channel flow (above the solid curve) is almost the same as the instability region for the 2-D channel flow entrance problem 

(above the dashed curve). 

to match the 0(St) terms in equating Eqs. (2.9) and (2.12). Hence 

(2A - 1) 
(2.21) X = for A<i. 

(T-2) 

To test the improvement in the stability, the steady state, fully developed, pressure driven 2-D channel flow 

is again considered. Eqs. (2.18) and (2.21) are used in lieu of Eq. (2.14). The rest of the implementation is 

exactly the same as described in the previous section. The solid curve in Fig. 5 shows the stability-instability 

boundary in the (A, r) space for the fully developed channel flow. By comparing Fig. 5 with Fig. 4, the 

improvement in the stability of the present treatment for this case is clearly seen. The present treatment 

moves the instability region around r = 1 caused by FH's boundary condition upward in the parameter 

space (A, T) to the region around r = 2. This would enable us to use r in the interval (0.5,1.2] for small 

viscosity. 

For the channel flow entrance problem, boundary conditions at the inlet and exit and the procedure 

for specifying the initial conditions are the same as described in the last section. Eqs. (2.18) and (2.21) 

are used to replace Eq. (2.14) for the solid wall. The stability-instability boundary in the (A, T) space for 

the entrance flow problem is shown by the dashed curve in Fig. 5. Close agreement between the stability- 

instability boundaries for the two cases in Fig. 5 suggests that the improvement in the computational stability 

is not related to the treatment of the inlet boundary conditions. The improvement results rather from the 

different treatment in the solid wall boundary condition. One advantage of the present treatment of solid 

wall is its insensitivity to other boundary conditions such as inlet and outlet boundary condition in channel 

flows, as indicated by the results shown in Fig. 5. The instability in the present treatment is mainly due the 

denominator (r - 2) in Eq. (2.21). A direct consequence of this improvement is that lower values of T, or 

lower viscosity v, can now be used. 

As one may speculate at this point that u(xf + 2es6t, t) can also be used for u&/ when A < 1/2. This 

would further improve the stability since x = (2A - l)/(r - 3). This is correct in principle. However, since 

the use of u/ as Ubf already allows the use of r whose value is close to 1/2, there is little practical need to 

use Uf that is too far away from the wall. 
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For transient flows, a second-order extrapolation can be used for 

ubf = —£-uf + -^uw + A^1 + A) [uw - (1 + A)uf + Auff] 

,      x (1 - A) 2(A -1) 2 .     . ^ 1 (2-22) =l^U// + A_^U/ + ___Uw) forA>_. 

This treatment helps to improve the accuracy in the velocity approximation when u(x, t) is not well resolved 

near the wall. Finally, it is easily seen that the present boundary condition treatment can be extended to 

3-D flow problems involving curved geometry. The efficacy of such an extension will be examined elsewhere. 

3. Results and Discussions. For the proposed boundary condition treatment to be useful, several 

issues need to be addressed: spatial and temporal accuracy, ability to handle geometric singularity, and the 
flexibility to handle complex geometry. Channel flows with constant and sinusoidally oscillating pressure 

gradients with analytic solutions are used to assess the spatial and temporal accuracy. The Stokes first 

problem (i.e., the flow due to an impulsively started wall) allows one to examine the response of the computed 

flow field to an imposed singular acceleration. The standard lid-driven cavity flow has a bounded domain but 
possesses stress or vorticity singularities near the corners between the moving and stationary walls. Finally, 

flow over a column of circular cylinders is the case used to assess the impact of the boundary treatment on 

the accuracy of the flow field around a curved boundary. 

3.1. Pressure driven channel flows. At steady flow, the exact solution for the a;-velocity profile is 

given by 

(3.1) U°M = 5£5I?(1",,)' °^'?^1' 
where H — (Ny - 3 + 2A) and rj — y/H = (j - 2 + A)/H. To assess the computational error of the LBE 

solution of the velocity, u(y), the following relative Z/2-norm error is defined 

rH ) l'2 

[u(y) - ua(y)fdy 

(3.2) E. 2 

0 

H Y'2 

ut(y)dy 

With the oscillating pressure gradient, ^ — Be 'ut, the exact solution can be easily expressed in 
complex variables. An important parameter in this flow is the Stokes number St defined as, 

(3.3) St =     H 

The Stokes number is the ratio of the channel height H to the thickness of the Stokes layer y/v/io. Since 
the error can vary with time, a time average over one period (T = 2TT/UJ) is needed and the relative error is 

1/2 

uo(y, t)fdydt 

(3.4) E2 

{[[[UM 

rT rH ^ 1/2 

/   /    ul(y, 
Jo Jo 

t) dydt 

In the lattice BGK model, St = 6X = Sy = 1. Comparing with the channel height H — (Ny - 3 + 2A), the 

dimensionless grid size (or grid resolution) is H. 
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10- 

FIG. 6. Convergence of the 2-D steady state pressure-driven channel flow simulations using the present boundary condition. 
The symbols represent numerical results and the straight lines are the least-square fit of the data, (a) Convergence of global 
relative L^-norm error inu(y) on H = (Ny — 3 + 2A). (b) Quadratic convergence of the slip velocity at wall uw. (c) Relative 

Li-norm error in u(y) as a function of A. 

Figure 6(a) shows the dependence of the relative L2-norm error on the channel height if for r = 0.55 and 

A = 0.0, 0.25 and 0.5. A maximum value of Nv = 131 is used. The second-order accuracy is demonstrated 

in the range of H investigated. It has been well established that the accuracy of the LBE method for the 

interior points is of second order. The fact that the overall accuracy is of second order in the present case 
means that the accuracy in the boundary condition is at least of second order. It is worth to note that the 
derivation given in Section 2 ensures that fa is second order accurate near the wall. It does not guarantee 
the second order accuracy of the velocity field near the wall. To address this issue, the wall slip velocity, 

uw = ux(y = 0), is evaluated using a second order extrapolation based on ux(y = A), ux{y — 1 + A) and 
ux(y = 2 + A). Since the true wall velocity in the pressure driven channel flow is zero, the wall slip velocity 
uw provides a measure of the accuracy for the treatment of the wall velocity. Fig. 6(b) shows the dependence 

of uw, normalized by the centerline velocity umax = -(H
2/8pv)(dp/dx), on if for A = 0.0, 0.25, and 0.5 

with r = 0.55. Quadratic convergence is clearly observed in all three cases which demonstrate the second 
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order accuracy of the velocity field near the solid wall. This is entirely consistent with the results shown 

in Fig. 6(a) which involves global convergence rather than the local (y — 0) convergence. Fig. 6(c) shows 
the relative error as a function of A using the present boundary treatment [Eqs. (2.3), (2.4), (2.13), (2.18), 
and (2.21)] for 0 < A < 1. The error in the range of 0 < A < 1/2 is comparable to those in the range 
of 1/2 < A < 1. The present boundary condition treatment does not induce larger computational error 

and is substantially more robust. Furthermore the 2nd-order accuracy is achieved in general by the present 

treatment for A < 1/2. 

s 10" 

IO- 

CS 

"3 

3 10"; 

St=8.0 T=0.505 
♦ A=0.25 

■   A=0.S 

• 4=0.75 

108 

FIG. 7. Dependence of the Z/2-norm error in u(j/)/«max on the lattice resolution H = (Ny — 3 + 2A) in oscillating pressure 
driven channel flow. Stokes number St = H/ wv/ui = 1 and 8. The symbols represent numerical results and the straight lines 

are the least-square fit of the data. 

Figure 7 shows the dependence of the relative 1,2-norm error on the channel height H in the oscillating 
pressure driven channel flow for Stokes number St = Hyjw/v = 1 and 8. For St = 1, the Stokes layer is 

as thick as the channel height H. For A = 0.25, 0.5, and 0.75, second-order accuracy in space is clearly 
demonstrated. Since the time step St in LBE is equal to the spatial resolution 6X, the accuracy in time must 
also be of second-order in order for the time-averaged L2-norm error to have a slope of 2.0 in Fig. 7. For 

St = 8, the Stokes layer thickness is about 1/8 of the channel height so that the computational error due 
to the insufficient resolution of the Stokes layer is a significant part of the error. For A = 0.25, the first 

lattice in the flow field is only a quarter of the lattice size away from the wall. The Stokes layer is thus 
better resolved for A = 0.25 (denoted by solid circles in Fig. 7) than for A = 0.5 and 0.75. However, as H 

increases, the difference between, A = 0.25 and A = 0.5 and 0.75 becomes smaller since all have reasonable 
resolutions in the Stokes layer. Although the slope for the error curve for A = 0.25 is observed to be about 

1.5 that is less than 2, it is an indication of the better-than-expected accuracy at the low resolution end. 

3.2. Stokes first problem: Flow due to an impulsively started wall. For a wall located at y = 0 
that is impulsively started, an unsteady Stokes layer of thickness 0(Vui) develops near the wall. For a 

fixed-grid computation, the error at small time is expected to be large due to insufficient spatial resolution. 
In the LBE method, this is also compounded by the use of fixed St (= 6X — Sy = I). Figure 8 shows the 
velocity profiles at t = 100 (in lattice unit). The wall velocity is U = 0.1 in lattice unit. The relaxation 
time r = 0.52 gives kinematic viscosity u = 0.0067. Similar to the oscillating pressure driven channel flow, 

the error is smaller for A = 0.25 than for A = 0.5 and 0.75 due to a better spatial resolution near the wall. 
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Velocity u(y)/U 

FIG. 8. Velocity profiles u(y, t)/U of on impulsively started plate (Stocks first problem) with A = 0.25, 0.5, and 0.75 
(symbols), att = 100 (in lattice unit). The solid line represents the exact solution of the problem. The bounce back on the link 

(BBL) always sets A = 0.5. 
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FIG. 9. Relative Li-norm error of the velocity profile u(y, t) during the initial transient of the impulsively started plate 
with various values of A (0.25, 0.5, and 0.75). The "linear" version of the boundary condition corresponds to Eq. (2.13). The 

"quadratic" version corresponds to Eq. (2.22). BBL is limited to A = 0.5 only. 

Figure 9 shows the temporal variation of the relative L2-norm error defined as 
1/2 

(3.5) E2(t) = 

H 

[u(y, t)-u0{y, t)fdy 

H        Y'2 

ul{y,t)dy , 
o 

for A = 0.25, 0.5, and 0.75. The result using the standard bounce-back on the link (BBL) scheme, which 
always sets A = 0.5, is also shown. The large relative errors in the beginning are due to the smaller values 

of the denominator in the above equation. It should be emphasized that this flow at small time is difficult 

to deal with for any computational technique due to the singular acceleration and large spatial gradient. 

For an impulsively started Couette flow, the long-time solution approaches the exact linear velocity profile 
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because the LBE method is a second-order accurate one. It is interesting to note that the present boundary 

condition treatment for A = 0.5 gives a slightly smaller error than the BBL scheme in this highly transient 

case. In such a transient flow, the computational accuracy in the near-wall region is typically dictated by 

the near-wall spatial resolution which must be smaller than the Stokes layer thickness in order to resolve 

the local flow field. In a finite difference calculation for such a flow, St and Sx can be independently chosen. 

If dx is not sufficiently small, further reduction in St will not lead to improvement in accuracy. At small t, 
neither the BBL scheme nor the present treatment resolved the Stokes layer so that the error is large. After 

the Stokes layer grows to certain thickness, the spatial resolution becomes adequate and the accuracy then 

improves. In view of the "slow flow" condition (2.5) introduced in the derivation, the performance of the 
current boundary treatment is comparable or better than the conventional bounce-back on the link scheme. 

Ä 

1.0 

0.5 

*&                 O 

^i               x 

%              ° 

a—f finite difference 
A=0.1 
A=0.5 
A=0.9 

0,0 
%>      T=0,6 Re=100 NxxNy=35x35    ■ 

-0.2   0.0     0.2     0.4     0.6     0.8     1.0 
Velocity u(y)/U at x=H/2 

FIG. 10.  Velocity profiles at the center (x/H = 1/2) in lid-driven cavity flow with various values of A (0.1, 0.5, and 0.9) 

at Re = 100. 

3.3. Flow in a lid-driven square cavity. Figure 10 shows the velocity profiles at the center (x/H = 

1/2) of the cavity of width H at Re = 100 with r = 0.6. Only 35 x 35 lattices are used and the cavity width 
is H - (Nx - 3 + 2Ä) = 32 + 2A. This requires the lid velocity to be U = uRe/H = 3.33/F in the lattice 

unit. It has a negligible compressibility effect for H ~ 32. A well-resolved finite difference solution for the 
velocity field based on the stream function-vorticity formulation is also shown for comparison. The velocity 

profile with A = 0.1 agrees well the finite difference solution. For A = 0.5, the result is rather reasonable 

with such a resolution. The difference is slightly larger on the negative velocity part for A = 0.9. The 

corner singularity in stress (or vorticity) is well handled for T = 0.6 and Nx = 35. However for r close to 0.5 

and with Nx = 35, the corner singularity induces wiggles in the velocity field. This issue will be examined 

elsewhere. Flow field for Re = 1000 is obtained with 67 x 67 lattices using A = 0.1, 0.5, and 0.9. Similar 

behavior in the velocity profiles is observed. 

3.4. Uniform flow over a column of circular cylinders. To simulate the external flow over a 
single cylinder would require placing the outer boundary far away from the cylinder. In order to keep the 

computational effort at a reasonable level in using constant space lattices, a column of circular cylinders of 
radius r and center-to-center distance H is considered instead. The flow field that needs to be computed is 

thus limited to ^H <y<H. At y = —H, the lattice is j — 2. The boundary conditions at j = 1 for /a's 
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FIG. 11.  Flow past a column of cylinders.   Velocity profiles at x = 0 for uniform flow over a column of cylinders.   The 

cylinder has a diameter (2r) of 7 lattice units. The cylinder center-to-center distance H = 70 in lattice units. 

are given by the following symmetry properties, 

(3.6) 
/o(«, 1) = /o(», 3), 
Mi, 1) = f7(i, 3), 

Mh 1) = Mh 3), 

/i(i,l) = /i(t,3), 

Mh i) = Mh 3), 

Mh 1) = Mi, 3), 

/2(i, 1) = Mh 3), 

Mi, 1) = Mh 3), 
Ä(i, 1) = Mi, 3). 

Similar conditions hold at y = H for j = JVy. At the inlet, the uniform velocity, u(y) = U, is specified at 

i — 1.5. Using A = 0.5, x — 0> Eq. (2.3) is applied to obtain fa's at i = 1. At the exit, a simple extrapolation 

is used, 

(3-7) fa(Nx, j) = 2fa(Nx - 1, j) - fa(Nx - 2, j),        for a = 4, 5, and 6. 

On the surface of the circular cylinder, Eqs. (2.3), (2.4), (2.13), (2.18), and (2.21) proposed in this paper are 

used to update the boundary conditions for /a's. 
Figure 11 shows the velocity profile u(x = 0, y)/U for H/r = 20 at Re = lUrjv — 10 using r = 3.5. 

Two values of relaxation time r, 0-505 and 0.525, are used. For r = 3.5, there are only 7 lattices from the 
front to the back stagnation points. The finite difference solution is obtained using w-ip formulation with 

body-fitted coordinates [26] and over 200 grid points are distributed along the upper half of the circle. These 
two solution with r = 0.505 and r = 0.525 are virtually identical to each other and they are both close to the 

finite difference solution. Fig. 12 shows the centerline (y = 0) velocity variations, upstream and downstream, 
at Re = 10 and 40. The sharp gradient near the front stagnation point, the length of the separation bubble, 

the maximum of the separation bubble velocity, and the recovery of the wake velocity are all in excellent 

agreement with the well resolved finite difference solution. 
As can be seen now that an important improvement of the present boundary condition treatment over 

the bounce-back scheme is that it can preserve the accuracy of the geometry under consideration. To further 
demonstrate this point, consider flow over a circular cylinder of radius r with the coordinate centered at the 
center of the cylinder. For r = 3.4 and 3.8, the front stagnation points are located at x = -3.4 and -3.8, 

respectively. With the bounce-back on the link (BBL) scheme, the front stagnation points in both cases will 
be placed at x = —3.5 which is half-way between the lattice at x = — 4 and x = — 3 on the centerline. In the 

present method, A = 0.6 and 0.2 for r = 3.4 and 3.8, respectively. The difference in A can be accurately 
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FIG. 12. Flow past a column of cylinders. Centerline (y = 0) velocity variation for a uniform flow over a column of 
cylinders for Re = 10 and 40. The cylinder diameter 2r is only of 7 lattice units. Finite difference results are based on u)-ip 

formulation and are well resolved. 
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FIG. 13. Flow past a 2-D cylinder. Similar to FIG. 11. Comparison of the velocity profiles at x = 0 for the radius r ■■ 
3.2, 3.4, 3.5, 3.6, 3.8 and 4.0 with Re = 10, T = 0.7, and H/r = 20. 

3.0, 

incorporated in the evaluation of fs{xb, t). This implies that although the boundary links for r = 3.4 will be 

different from those for r = 3.8, the flow fields based onr — 3.4 and r = 3.8 should be nearly the same when 

the coordinates are normalized by the radius r. To validate this point, a series of computations are carried 

out for r = 3.0, 3.2, 3.4, 3.5, 3.6, 3.8 and 4.0 for H/r = 20 at Re = 10. The profiles of the dimensionless 
x-component velocity ux(x, y)/U as a function of y/r at x = 0 are compared for these seven different radii 

r in Fig. 13. Excellent agreement is observed. Figure 14 compares the ux(x, y)/U as a function of x/r at 
y — 0 for both the downstream and upstream regions for these seven different radii. Again, all seven cases 

compare very well even in the near wall region. Furthermore, the LBE solutions with different radii and 
the same Reynolds number all well agree with the w — cf> finite difference solution of the incompressible NS 
equation with a well resolved resolution. This clearly demonstrates that the present boundary condition 

treatment has maintained geometric fidelity even with coarse grid resolutions. 
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FIG. 14. Fiou; past a 2-£> cylinder. Similar to FIG. 12. Comparison of the centerline (y = 0) velocity for radius r = 3.0, 

3.2, 3.4, 3.5, 3.6, 3.8 and 4.0 with Re = 10, r = 0.7, ana" H/r = 20. 

It is noted that the interpolation for fs(xb, t) given by Eq. (2.3) is carried along the line in the direction 
of ea. The results for flow over a cylinder are quite satisfactory. Other interpolation procedures can certainly 

be devised to use more information on neighboring lattices in the flow field. However, this will result in a lot 

more complications in the implementation. It is not clear if such an attempt will necessarily lead to further 

improvement over the present approach. 

4. Conclusion. In this work a second-order accurate boundary condition treatment for the lattice 
Boltzmann equation is proposed. A series of studies are conducted to systematically validate the accuracy 

and examine the robustness of the proposed boundary condition in steady and unsteady flows involving 

flat and curved walls. Compared with the existing method for treating boundary condition in the lattice 
Boltzmann method, the proposed treatment has the following advantages, (i) It can preserve the geometry 

of interest without truncating it into a series of stair steps, (ii) The boundary treatment generally results in 

solutions of second-order accuracy for the velocity field in space, and in time for some cases, (iii) Compared 

with the widely used bounce-back on the link scheme, the present treatment gives comparable or better 

results for the flow field under otherwise identical computational parameters. 
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